

Cavitating Herschel Venturi nozzle test rig

Heiko Warnecke, Dep. 1.53 Liquid Flow

introduction

- Flow rate control device
- Proportioning of liquids
- Flow meter

- Reproducibility
- Flow rate stability
- Fast reaction time
- Small
- Cheap

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

introduction

- Influence of numerous factors on the cavitation
 - Flow cross-section
 - Liquid
 - Reynolds-number
 - Upstream and downstream
 pressure

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

set-up

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

characterisation

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

characterisation

 Assumption of a linear correlation between flow rate and upstream pressure

Nozzle	Diameter	Flow Q	Slope
nr. i	D	(4 bar)	b
	mm	l/h	l/h/bar
	± 1 µm	± 0.1 %	
1	0.740	42.69	5.4 ± 0.2
2	0.738	42.65	5.4 ± 0.2
3	1.396	151.80	19.2 ± 0.4
4	1.397	152.40	19.5 ± 0.5
5	1.393	154.50	19.5 ± 0.5
6	2.601	527.80	71.0 ± 1.4

National Metrology Institute

characterisation

 Different nozzles with same nominal diameter

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

additivity

$$Q_{sum} = \sum_{i} (Q_i + (p_j - p_i) * b_i)$$

rel. dev. =
$$\frac{Q_{exp} - Q_{sum}}{Q_{sum}}$$

Q_i: single nozzle flow rate
b_i: calculated slope of each nozzle
p_i: upstream pressure of single nozzle flow
p_i: upstream pressure of multiple nozzle flow

different liquids

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

different liquids

Medium	Principal constituents	Density	Vapour pressure	Viscosity
		g/cm ³	mbar	mm ² /s
White spirit	Hydrocarbon, C10 – C13, n-Alkane, iso-Alkane, cyclic compound	0.785	0.5	1.2
Haku 1025- 310	Hydrocarbon, C11 – C14, iso-Alkane, cyclic compound	0.761	0.6	1.3
Water	Tap water	0.998	23.4	1.0

physical properties density, vapour pressure and kinematic viscosity at 20°C

different liquids

Medium	Standard deviation
White spirit	0.097 %
Haku	0.018 %
Water	0.023 %

- ⇒Similar flow rates of white spirit and cleaner solvent
 ⇒The flow rate of water is higher at the same upstream pressure
- \Rightarrow Comparable standard deviation for different liquids

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

load profiles

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

load profile

New characterisation for water meters close to real world conditions

[[]Schumann et al. 2017]

Load profiles of a typical german household are generated

 \Rightarrow How can a load profile be realised in a test rig?

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

load profile

- Flow rates at constant upstream pressure
- pressure ratio smaller than 0.6

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

load profile section

 \Rightarrow pressure excursions of 7% for about 1 s \Rightarrow No effect seen on the balance signal

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

- Flow rates of the individual nozzles sum up to the expected flow rates
- A constant mass flow can be generated with different liquids, including liquid mixtures
- With the nozzles a load profiles can be generated with fast flow rate changes

- Characterisation and verification of liquid properties (vapour pressure, viscosity, etc)
- Characterisation of nozzle properties (surface roughness, edges, etc)
- Variation of measurement conditions (pressure, temperature, etc)

Different liquids

• Nominal diameter 1.4 mm (left) for water and cleaner solvent and 2.6 mm (right) for water and white spirit

 \Rightarrow Different flow rates of water and the two other liquids at the same pressure

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin